Plumbers often use a formula to determine the lengths of pipes that have to be fitted around objects. Some common terms are offset, run, and travel. The formula below is used to connect a lower horizontal pipe to a travel pipe using a 60° elbow.

\[
\frac{\text{offset}}{\text{travel}} = 0.866
\]

Example 1. If the offset in a particular project is 75 inches, what must the length of the travel pipe be?

Similar Triangles: Which triangles are similar? How do you know?

If the triangles are similar, the corresponding sides will be in the same ratio. Complete the following ratios.

\[
\frac{BC}{AB} = \frac{DE}{EF}
\]

The study of the measurement of triangles is called **Trigonometry**.
Sine Ratio:

- is the ratio (in fraction or decimal form) of the length of the side opposite a given angle to the length of the hypotenuse in a right triangle
- abbreviated as 'sin', but pronounced 'sine'

\[
\sin \theta = \frac{\text{length of side opposite } \angle \theta}{\text{length of hypotenuse}}
\]

In designing and construction, accuracy is important. Engineers cannot rely on approximated values because slight errors can lead to serious flaws in a design. Therefore, a calculator is used to determine the values.

Example 2. Use your calculator to find each of the following values. Round your answers to 4 decimal places.

- a) \(\sin 15^\circ \)
- b) \(\sin 30^\circ \)
- c) \(\sin 60^\circ \)
- d) \(\sin 80^\circ \)

What do you notice about these values?

As the angle increases, so does the sine value.

Use your calculator to determine the value of \(\sin 90^\circ \). What is the reason for this value?

Sine 90° = 1 because the opposite side and the hypotenuse are the same side (they are both opposite the right angle).
Example 3. The sine ratio can be used to help you find missing parts of a right triangle. Determine the length of PQ to the nearest tenth of a centimetre.

Example 4. A ladder 8.5 metres long makes an angle of 72° with the ground. How far up the side of a building will it reach? Draw a diagram.
Example 5. Determining the Hypotenuse.

Brad is building a ramp. The ramp must form an angle 22° with the level ground and reach a point that is 1.5 metres above the ground. How long will the ramp be?

Definitions

Direct Measurement: uses a measuring instrument to determine the length or angle

Indirect Measurement: uses mathematical reasoning or a formula to determine the length or angle

Angle of elevation: the angle formed between the horizontal and the line of sight while looking upwards. It is sometimes referred to as the angle of inclination.

Angle of depression: the angle formed between the horizontal and the line of sight while looking downwards.
Example 6.

The angle of elevation of an airplane is 23° from an observer on the ground. If the airplane's altitude is 2500 m, how far away is it?

![Diagram of airplane and angle of elevation]

Example 7.

A bird sits on top of a lamppost. The angle of depression from the bird to the feet of an observer standing away from the lamppost is 35°. The distance from the bird to the observer is 25 meters. How tall is the lamppost?
7.2 Sine Ratio Assignment

1. Calculate the value of sin A to two decimal places.

 a)

 ![Diagram](image1.png)

 b)

 ![Diagram](image2.png)

2. Use your calculator to determine the value of each of the following sine ratios to four decimal places.

 a) \(\sin 10^\circ \)

 b) \(\sin 48^\circ \)

 c) \(\sin 62^\circ \)

 d) \(\sin 77^\circ \)

3. Calculate the length of the side opposite the indicated angle in the following diagrams.

 a)

 ![Diagram](image3.png)

 b)

 ![Diagram](image4.png)
4. A rafter makes an angle of 28° with the horizontal. If the rafter is 15 feet long, what is the height at the rafter’s peak? Draw a diagram.

5. How high is a weather balloon tied to the ground if it is attached to a 15-metre string and the angle between the string and the ground is 35°?
6. Find the length of the hypotenuse in the following diagrams.

\[a) \quad h = 7.8 \text{ mm} \]

\[b) \quad h \quad 12.1 \text{ cm} \quad 70^\circ \]

7. How long is a guy wire that is attached 4.2 metres up a pole if it makes an angle of \(52^\circ\) with the ground?
8. George is in a hot air balloon that is 125 metres high. The angle of elevation from a house below, to the balloon, is 18°. How far is George from the house?

9. The angle of elevation of a road is 4.5°. What is the length of the section of road if it rises 16 metres?

10. The angle of depression from an airplane to a forest fire below is 62°. If the direct distance from the airplane to the fire is 3000 m, how far is the fire from a point directly below the airplane? *Hint: Don’t forget about the Pythagorean Theorem…*